
Python for Econometrics and Operations Research

Sander Gribling Pieter Kleer Johan van Leeuwaarden Sven Polak

Table of contents

1 Welcome 3

1.1 What is a programming language? . 4

1.2 Why Python? . 4

2 Software 6

2.1 Installing Anaconda . 6

2.2 Jupyter Notebook . 8

2.2.1 Creating new notebook . 8

2.2.2 Opening existing notebook . 9

2.3 Code snippets in this book . 10

3 Python basics 11

3.1 Arithmetic operations . 11

3.2 Variables . 12

3.3 Lists . 13

3.4 For-loop . 14

3.5 Conditional statements . 17

3.6 Math basics . 21

3.6.1 Python function . 21

3.6.2 Plotting . 22

3.6.3 Root finding . 23

3.6.4 Integration . 24

3.6.5 Why Python and not my calculator? . 26

4 Linear algebra 28

4.1 Packages . 28

4.2 Why numpy and sympy ? . 29

4.3 Basic matrix and vector operations with Numpy . 29

4.4 Application: input-output models . 29

4.5 Matrix operations: inverse, determinant, solving linear systems 31

4.6 Modifying matrix entries . 33

4.7 Linear transformations of images . 34

4.8 Symbolic computations: sympy . 38

4.9 Application: supply and demand model . 39

4.10 Symbolic computation of the determinant in Python with sympy 40

4.11 (Optional) Row reduction with intermediate steps . 40

1

5 Linear optimization 43

5.1 Gurobi installation . 43

5.1.1 Register at Gurobi . 43

5.1.2 Download Gurobi . 43

5.1.3 Install Gurobi . 43

5.1.4 Gurobi license . 44

5.1.5 Using Gurobi in Python . 44

5.1.6 Test your installation . 44

5.2 Basics . 44

5.2.1 Example: Duplo problem . 45

5.2.2 Infeasible models . 51

5.3 Integer variables . 53

5.4 Beyond the basics . 55

2

Chapter 1

Welcome

Welcome to the online “book” that serves as an introduction to the programming language Python, that you

will see in various courses throughout the Econometrics and Operations Research (EOR) bachelor program.

The first part of this book is used for the “Python crash course” announced during the course Linear Algebra.

The crash course consists of two (recommended) lectures that will form a useful basis for various programming

assignments in the EOR bachelor program, including the assignment of the (mandatory) course Linear

Optimization in the second quartile of the first year.

The two crash course lectures (taught only in English) are outlined below, including links to the lecture

materials. To program in Python, we will use the Jupyter Notebook application in which we can execute

Python code.

INFO Overview

Lecture 1 (September 9, 12.45–14.30, Cube 242) General introduction to Jupyter Notebook and

Chapter 3 - Python basics (except Section 3.6).

Right-click and use “Save link as…” for the materials below:

Slides in PDF form.

Exercises of Chapter 3 (see Section 2.2.2 on how to open this file in Jupyter Notebook after storing it

on your computer).

Solutions (also Jupyter Notebook file).

Lecture 2 (September 23, 14.45-16.30, Cube 241) General introduction to packages, Numpy and

Sympy, and Chapter 4 - Linear Algebra.

Right-click and use “Save link as…” for the materials below:

Slides in PDF form.

Exercises of Chapter 5 (see Section 2.2.2 on how to open this file in Jupyter Notebook after storing it

on your computer).

Image.jpg (store this image in the same folder as the Jupyter Notebook)

INFO Software requirements

We will use the Jupyter Notebook application during our lectures, which is available on the university

computers in the computer room where the lectures take place.

3

exercises-chapter3.ipynb
exercises-chapter3-sols.ipynb
05-lin-alg.ipynb
image.jpg

If you want to use your private laptop, you can install Python and Jupyter Notebook by following the

instructions in Chapter 2. Please do this before the first lecture.

Before we jump into coding with Python, we will start by discussing what programming is at the most basic

level and motivating why we are learning how to code in Python in the first place.

1.1 What is a programming language?

Without getting into complicated details, a programming language is a way to communicate to a computer,

via written text, tasks or operations that you want it to carry out. This is very different to how we often usually

interact with a computer, which often involves pointing and clicking on different buttons and menus with

your mouse.

In the EOR bachelor program, the goal is often to tell a computer to carry out complicated numerical

computations or to visualize numerical data. To some extent, you have already done this in high school using

a graphing calculator. In fact, everything that your graphing calculator can do, you can also do with Python,

but the advantage of Python is that it can also handle much more complicated tasks.

To use Python in a correct fashion, it is important that you understand the grammar, i.e., “syntax”, of the

Python programming language. When humans speak to each other and someone makes a grammar mistake,

it usually isn’t a big deal. We usually know what they mean. But if you make a “syntax error”, i.e, grammar

mistake in a programming language, it won’t understand what you mean. The computer will throw an error.

1.2 Why Python?

There are many different programming languages out there: C, C++, C#, Java, JavaScript, R, Julia, Stata,

MATLAB, Fortran, Ruby, Perl, Rust, Go, Lua, Swift - the list goes on. So why should we learn Python over

these other alternatives?

The best programming language depends on the task you want to accomplish. Are you building a website,

writing computer software, creating a game, or analyzing mathematical data? While many languages could

perform all of these tasks, some languages excel in some of them.

Python is by far the most popular programming language when it comes to “data science” tasks, that you will

often encounter in the EOR bachelor program. It is also often used in web development, creating desktop

applications and games, and for scientific computations. It is therefore a very versatile programming language

that can complete a very wide range of tasks.

Python is also completely free and open source and can run on all common operating systems. This means

you can share your code with anyone and they will be able to run it, no matter what computer they are on or

where they are in the world.

There is also a very large active community that creates packages to do a wide-range of operations, keeping

Python up to date with the latest developments. For example, excellent community help is available at

Stackoverflow, so if you Google how to do something in Python most likely that question has already been

answered on Stackoverflow. Funnily enough, a key skill to develop with programming is how to formulate

your question into Google to land on the right Stackoverflow page.

More recently, “large-language” models like ChatGPT have become a very useful resource for Python.

ChatGPT can write excellent Python code and also explains all the steps it takes, so we encourage you to use

4

https://stackoverflow.com/

it as a tool to help you when you are stuck.

You should keep in mind though, that throughout the bachelor program, you will not always be allowed to

use tools like ChatGPT. It is also important that you understand basic programming concepts to catch errors

that AI might introduce (do not forget that LLMs are merely predicting text and not “consciously” writing a

script), or to help improve your AI-prompt writing skills.

These days employers are increasingly looking to hire people with programming skills. Knowing how to

program in Python - one of the most commonly used languages by companies - is therefore a very valuable

addition to your CV.

5

Chapter 2

Software

In this chapter we will learn how to install Python and run our very first command.

2.1 Installing Anaconda

The easiest way to install Python and Jupyter Notebook is by installingAnaconda, which is a software package

that includes Python, Jupyter Notebook, and other software applications. You can install Anaconda by visiting

https://www.anaconda.com/download.

You should see this page:

Figure 2.1: Anaconda Download Page

You should click the “Skip registration” button (although feel free to register if you like). You will then see

the following page:

6

https://www.anaconda.com/download

Figure 2.2: Anaconda Download Page

You should then click on the “Download” button. Mac users will see a Mac logo instead.

After downloading the file, click on it to install it. Follow the installation wizard and keep all the default

options during installation.

After installation you will see a number of new applications on your computer. You can see all applications

that were installed using Anaconda Navigator. You can open the navigator by searching for it in the Start

menu (on Windows).

Figure 2.3: Anaconda Navigator

7

We highlight two applications:

• Jupyter Notebook. This is a web application that allows you to write a notebook (like a report) with

text and Python code snippets with output. We will learn how to use this application later on.

• Spyder/VS Code. These are computer applications that allows you to write Python scripts and execute

them to see the output. Such an application is called an Integrated Desktop Environment (IDE).

2.2 Jupyter Notebook

You can open the Jupyter Notebook application either by pressing ‘Launch’ in the Anaconda Navigator, or

you can search for the application directly on your (university) computer via the Start menu.

The application will open as a tab in a web browser, and you should then see a list of folders.

Figure 2.4: Jupyter Notebook application

2.2.1 Creating new notebook

You can navigate to a folder and then create a new notebook by clicking on ‘New’ in the top-right and then

selecting ‘Python 3 (ipykernel)’ under Notebook.

Figure 2.5: Creating notebook

The new notebook will open in another tab and is stored in the folder in which you created it, typically under

the name ‘Untitled.ipynb’. You can change the name of the file either in the folder in which you stored it, or

via File -> Rename in the top-left corner. You should see the empty notebook as below.

8

Figure 2.6: New notebook

In the bar you can type Python code. Let us execute our first code, which is a simple calculation 1 + 1. To
find 1 + 1 in Python, we can use the command 1+1 , similar to how we would do it in Excel or in the Google

search engine. Let’s try this out. Type 1+1 in the code bar and click ▶ Run (or hit Shift + Enter on your

keyboard). We will see the output 2 on the next line next to a red Out [1]:

Figure 2.7: First Python code

The red Out [1] means this is the output from the code snippet In [1] executed in this notebook. If we continue

typing code in the second bar, it will be called In [2] and its output Out [2]. However, the same happens if we

would re-run the first code snippet with 1+1 : It will also be called In [2] and its output Out [2]. The index
keeps track of how many code snippets have been executed in the notebook.

2.2.2 Opening existing notebook

The extension of a Jupyter Notebook file is .ipynb and sometimes denoted as Jupyter Source File. If you

have stored such a file on your computer, you can open in it Jupyter Notebook as follows:

• Open Jupyter Notebook (see above) and navigate to the folder where you stored the file.

• Click on the .ipynb file and then it should open in a new tab of the browser.

Exclamation-Triangle WARNING about files on university computer

If you store a file on a (TiU) university computer, for example in the Downloads folder, it will typically

be deleted when you log out. To avoid this, either:

• Copy the file onto a USB drive.

• E-mail the file to yourself.

• Store it on theM: drive (that is denoted by the drive that has your name) of the university computer,

whose files are not deleted.

Next time you want to use a file, put it again in the Downloads folder to work on it (and make sure to

back it up properly again afterwards).

If you want to open a .ipynb file that is located in the M: drive of a university computer, you need to open

9

Jupyter Notebook differently than explained above (because you cannot navigate to the M: drive if you open

Jupyter Notebook via the Start menu). Instead, do the following:

1. Close all instances of Jupyter Notebook if any are running.

2. Look up the Anaconda Prompt application in the Start menu and Run it.

3. Type jupyter notebook --notebook-dir=M: and press Enter

4. Jupyter Notebook should now open in the web browser showing the files and folders of the M: drive

5. Open the desired .ipynb file to work on it.

2.3 Code snippets in this book

In this book, we won’t always show screenshots like we did above. Instead we will show code snippets in

boxes like this:

1 + 1

2

The part that is code will be in color and there will be a small clipboard icon on the right which you can use

to copy the code to paste into your own Notebook to be able to experiment with it yourself. The output from

the code will always be in a separate gray box below it (without a clipboard icon).

10

Chapter 3

Python basics

In this chapter we will learn how to use Python as a calculator and see some basic programming concepts.

3.1 Arithmetic operations

We start with the most basic arithmetic operations: Addition, subtraction, multiplication and division are

given by the standard + , - , * and / operators that you would use in other programs like Excel. For

example, addition:

2 + 3

5

Subtraction:

5 - 3

2

Multiplication:

2 * 3

6

Division:

3 / 2

1.5

It is also possible to do multiple operations at the same time using parentheses. For example, suppose we

wanted to calculate:
2 + 4
4 ⋅ 2

= 6
8

= 0.75

We can calculate this in Python as follows:

11

(2 + 4) / (4 * 2)

0.75

With the ** operator (two stars) we can raise a number to the power of another number. For example,

23 = 2 × 2 × 2 = 8 can be computed as

2 ** 3

8

Exclamation-Triangle WARNING

Do not use ^ for exponentiation. This actually does a very different thing in Python.

LIGHTBULB Exercise 3.1

Compute the following expressions using the operator +, −, ∗, / and ∗∗:
i) 3 + 5 ⋅ 2
ii)

(10−4)2

3

iii)
((2+3)⋅4−5)2

3+1

3.2 Variables

In Python we can assign single numbers to variables and then work with and manipulate those variables.

Assigning a single number to a variable is very straightforward. We put the name we want to give to the

variable on the left, then use the = symbol as the assignment operator, and put the number to the right of the

= . The = operator binds a number (on the right-hand size of =) to a name (on the left-hand side of =).

To see this at work, let’s set 𝑥 = 2 and 𝑦 = 3 and calculate 𝑥 + 𝑦:

x = 2
y = 3
x + y

5

When we assign 𝑥 = 2, in our code, the number is not fixed forever. We can assign a new number to x . For
example, we can assign the number 6 to x instead. The sum of 𝑥 (which is 6) and 𝑦 (which is 3), is now 9:

x = 6
x + y

9

Finally, you cannot set 𝑥 = 2 with the command 2 = x . That will result in an error. The name must be on
the left of = and the number must be on the right of = .

12

LIGHTBULB Exercise 3.2

Define variables 𝑎, 𝑏, 𝑐 with numbers 19, 3 and 7, respectively. Compute the following expressions:
i) 𝑎 + 𝑏 ⋅ 𝑐
ii)

(𝑎−𝑐)2

𝑏
iii)

((𝑏+𝑐)⋅𝑎−𝑐2)2

𝑎+𝑏

If you want to print multiple expressions within the same code snippet, you can use the print() function

of Python for each of the expressions.

x = 2
y = 3
print(x + y)
print(x - y)

5
-1

3.3 Lists

We can also store multiple variables in one object, a so-called list. A list with numbers is created by writing

down a sequence of numbers, separated by commas, in between two brackets [and] .

z = [3, 9, 1, 7]
z

[3, 9, 1, 7]

We can also create lists with fractional numbers.

z = [3.1, 9, 1.9, 7]
z

[3.1, 9, 1.9, 7]

To access the numbers in the list, we can index the list at the position of interest. If we want to get the number

at position 𝑖 in the list, we use the syntax z[i] .

z[1]

9

Something strange is happening here… The left-most number in the list is 3.1, but z[1] returns 9. This
happens because Python actually starts counting at index 0 (instead of 1).

13

INFO Indexing convention in Python

The left-most number in a Python list is located at position 0. The number next to that at position 1, etc.
That is, the 𝑖-th number in a list with 𝑛 numbers can be found at position 𝑖 − 1 for 𝑖 = 1, … , 𝑛

In other words, the “first” number in the list is located at position 0, and we can access it using z[0] instead.

Below we index the number of the list at positions 𝑖 ∈ {0, 1, 2, 3} separately.

z[0]

3.1

z[1]

9

z[2]

1.9

z[3]

7

LIGHTBULB Exercise 3.3

Consider the list 𝑎 = [11, 41, 12, 35, 6, 33, 7].
i) Compute the sum of the numbers at even positions in 𝑎 (i.e., positions 0, 2, 4, and 6).
ii) Compute the result of multiplying the first and last elements of 𝑎, then subtracting the middle

element.

iii) Compute the square of the element at position 2, divided by the sum of the elements at the odd

positions.

3.4 For-loop

Suppose we want to compute the sum of the numbers in the list 𝑎 of Exercise 3.3. We could do this manually

by indexing every number and adding them one by one.

a = [1, 4, 2, 5, 6, 3, 7]

a[0] + a[1] + a[2] + a[3] + a[4] + a[5] + a[6]

28

In fact, we can also define a new variable to store this number in. Let us call this variable total_sum .

14

a = [1, 4, 2, 5, 6, 3, 7]

total_sum = a[0] + a[1] + a[2] + a[3] + a[4] + a[5] + a[6]
total_sum

28

If the list is 𝑎 is very long, for example containing thousands of elements, then it becomes very tedious to

compute the total sum with the approach above. Such long lists are not uncommon in real-life data.

A much better way is to use a for-loop, which lets us go through each element in the list one at a time. Here’s

how we could compute the sum of the numbers in the list 𝑎 using a for-loop:

a = [1, 4, 2, 5, 6, 3, 7]
total_sum = 0

for i in [0,1,2,3,4,5,6]:
total_sum = total_sum + a[i]

print(total_sum)

28

Let’s break down what is happening here.

• We first define the list 𝑎 = [1, 4, 2, 5, 6, 3, 7].
• We define the variable total_sum with initial value 0. This variable will be the running total of the

numbers in 𝑎 that we are adding up. After the full code has been executed, this variable will contain

the sum of all numbers in 𝑎, and its value is printed at the end using print(total_sum) .

• The line for i in [0,1,2,3,4,5,6]: indicates that we want to carry out a piece of code multiple

times with different values for the variable i .
– The words for and in are Python keywords, meaning they have a very specific purpose in

Python. They get a different color when you type them in a code block.

– Note that the line should end with a colon : .
• The piece of code that has to be runmultiple times for 𝑖 ∈ {0, 1, 2, 3, 4, 5, 6} is total_sum = total_sum + a[i] .

– For Python to understand that total_sum = total_sum + a[i] has to be executed with

different values for 𝑖, we indent this line (using Tab on the keyboard).
– We overwrite the value of total_sum with its current value plus the number at position 𝑖 in 𝑎,
i.e., the number a[i] . In the table below this process is illustrated for all the values of 𝑖.

i a[i] total_sum after this iteration

0 1 0 + 1 = 1

1 4 1 + 4 = 5

2 2 5 + 2 = 7

3 5 7 + 5 = 12

4 6 12 + 6 = 18

5 3 18 + 3 = 21

6 7 21 + 7 = 28

15

i a[i] total_sum after this iteration

In the first iteration of the for-loop (𝑖 = 0), we have the initial number 0 for total_sum so adding a[0]
results in a new value of total_sum being 0 + 1 = 1.

In the second iteration, with now total_sum equal to 1, we add the number 𝑎[1], which results in the new
value of total_sum being 1 (current number of total_sum) plus a[1] (which is 4), resulting in a new
running total of 1 + 4 = 5.

If we would be interested in only computing, e.g., the sum of the first three numbers in 𝑎, we could replace
the index list [0, 1, 2, 3, 4, 5, 6] by [0, 1, 2].

a = [1, 4, 2, 5, 6, 3, 7]
total_sum = 0

for i in [0,1,2]:
total_sum = total_sum + a[i]

total_sum

7

LIGHTBULB Exercise 3.4

Create the list 𝑎 = [1, 4, 2, 5, 6, 3, 7].
i) Compute the sum of the numbers at the even indices using a for-loop.

ii) Compute the product of the numbers in 𝑎 using a for-loop.

If you want to execute more lines of code in every iteration of the for-loop, you should indent all of them. In

the code below we compute the running total total_sum and also use the print() command of Python

to print the value of the running total after every addition. This results in all the values in the right column of

the above table being printed.

a = [1, 4, 2, 5, 6, 99, 3]
total_sum = 0

for i in [0,1,2,3,4,5,6]:
total_sum = total_sum + a[i]
print(total_sum)

1
5
7
12
18
117
120

16

One final note to make is that this approach might still require a lot of typing if the list 𝑎 contains many

values. For example, if we are given a list of a thousand values, we would have to type a list with values 0
through 999 in the for-loop above.

There is a way to do this quicker, by using the range() function in Python. If we instead use the line

for i in range(7): , then Python executes the indented code below for the values 𝑖 = 0, 1, 2, 3, 4, 5, 6.
Note that 𝑖 = 7 is not included!

In general using for i in range(n): executes the indented lines below for the (in total 𝑛) values
𝑖 = 0, 1, 2, … , 𝑛 − 1.

a = [1, 4, 2, 5, 6, 99, 3]
total_sum = 0

for i in range(7):
total_sum = total_sum + a[i]
print(total_sum)

1
5
7
12
18
117
120

3.5 Conditional statements

In many programming situations, we want the computer to make decisions based on certain conditions. For

example, if a number is negative, we might want to handle it differently than if it were positive. In Python,

we can do this using conditional statements, also known as if/else statements.

Let’s look at a basic example. We first make a general remark about printing text in Python.

INFO Printing text

If you want to print text in Python, you should put it in between quotation marks.

print("Hello world")

Hello world
If you want to print both text and variables, you can do that in the same print() command separating

them with a comma.

x = 3
print("The value of x is", x)

The value of x is 3

17

Note that in "The value of x is" part, the x-symbol is interpreted merely as a letter, not a variable.

Now let us look at an example.

x = 5

if x > 0:
print("x is positive")

else:
print("x is not positive")

x is positive

Here is what this code does:

• x = 5 assigns the number 5 to the variable x.

• if x > 0: checks whether x is greater than zero, i.e, Python checks whether the condition x > 0
is true or false. If the condition is true, it executes the indented code below, which is a print-statement

in this case. Python then no longer checks the else: statement.

• If the condition is false (i.e., 𝑥 ≤ 0), then Python executes the indented code under else: , which is a
different print-statement in this case.

We can also have multiple conditions using elif , which stands for “else if”. Below we add the third

statement that checks if 𝑥 is precisely equal to zero. Also here, as soon as Python reaches a statement that is

true, it does not check the remaining statements anymore.

x = 0

if x > 0:
print("x is positive")

elif x == 0:
print("x is zero")

else:
print("x is negative")

x is zero

In the code above, we use the syntax x == 0 to define the statement that checks whether 𝑥 is precisely

equal to 0. You should not use x = 0 (otherwise Python would confuse this with assigning a value of 0 to
the variable 𝑥, which is not what we want).

This checks the conditions one by one from top to bottom and executes the first indented code block where

the condition is true. If you want more than three conditions, you should start with an if statement, then

elif statements, and finish with an else .

Finally, if you want to execute multiple lines of code for one or more of the conditions, you should indent all

those lines under the respective conditions.

18

x = 1

if x > 0:
print("x is positive")
print(x)

elif x == 0:
print("x is zero")

else:
print("x is negative")
print(x)

x is positive
1

LIGHTBULB Exercise 3.5

Create the list 𝑎 = [1, 4, −4, 0, 5, −3, −7] in Python.
Use a for-loop in combination with the code above to check for every number in 𝑎 whether it is positive,

zero, or negative. If a number is positive you should print the message "The number is positive" ,
if it is zero "The number is zero" and if it is negative "The number is negative" .
The output of your piece of code should be as follows.

The number is positive
The number is positive
The number is negative
The number is zero
The number is positive
The number is negative
The number is negative

Let us now look at an example from mathematics. Suppose we want to compute the roots 𝑥 of a quadratic

equation of the form:

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0
Here 𝑎, 𝑏 and 𝑐 are known given numbers, and the goal is to find one or more 𝑥’s that satisfy the above
equation.

The solution(s) to this problam are given by the quadratic formula (Dutch: abc-formule):

𝑥 = −𝑏 ±
√

𝑏2 − 4𝑎𝑐
2𝑎

Here ± means that one solution is given by choosing a plus symbol in the place of ±, and the other solution

by choosing the minus symbol.

The expression under the square root, called the discriminant 𝐷 = 𝑏2 − 4𝑎𝑐, determines how many (real)

roots exist:

• If 𝐷 > 0, the equation has two real roots.
• If 𝐷 = 0, the equation has exactly one real root.
• If 𝐷 < 0, there are no (real) roots.

19

LIGHTBULB Exercise 3.6

Create variables 𝑎 = 3, 𝑏 = 2 and 𝑐 = −1. Create a variable D for the discriminant (in terms of 𝑎, 𝑏
and 𝑐).

i) Use conditional statements to determine how many roots the quadratic formula 𝑎𝑥2 + 𝑏𝑥 + 𝑐
has, based on the three possibilities for the discriminant. For each possibility, print an appropriate

message in the indented code block. For the chosen 𝑎, 𝑏 and 𝑐, the function has two roots (so this
case should be printed in your code).

ii) Use conditional statements to print the roots 𝑥 of the quadratic formula 𝑎𝑥2 + 𝑏𝑥 + 𝑐, based
on the three possibilities for the discriminant (in the third case, do not print the roots, but a

message saying there are no roots). Hint: If you want to print two variables y and z you

can use print(y,z) or use print(y) and print(z) on different indented lines. For the

chosen 𝑎, 𝑏 and 𝑐, your output should show the roots −1 and 0.333 (possibly with more or less
decimals).

You can play around with your code by choosing different numbers for 𝑎, 𝑏 and 𝑐, and see if you get
different output cases for both questions above.

LIGHTBULB Exercise 3.7

Create the lists 𝑎 = [3, 7, 1, 4], 𝑏 = [2, 7, 4, 4] and 𝑐 = [11, 3, 0, 1]. Write a for-loop that executes your

code of Exercise 3.6(ii) for every combination (𝑎𝑖, 𝑏𝑖, 𝑐𝑖) where 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 are the numbers at position 𝑖
in the lists 𝑎, 𝑏, 𝑐, respectively, for 𝑖 = 0, 1, 2, 3.
Your output should look like this.

The formula has no real roots
The formula has no real roots
-4.0 0.0
-0.5

LIGHTBULB Exercise 3.8 (bonus)

Suppose we are given a list 𝑔 = [9.1, 1.3, 5.4, 5.6, 5.74, 6.74, 8.25, 9.2, 7.1, 6.9] of student grades.
i) Write a Python code that rounds every grade to the nearest half integer, i.e., to the value in

the set {0, 0.5, 1, 1.5, 2, 2.5, … , 8, 8.5, 9, 9.5, 10} it is closest to, and print this value. Hint:

You can round a number to its closest integer by using the round() function. For example

round(5.3) gives 5, and round(5.9) gives 6. Think of a way to use the round() function

to round to half integers.

On 𝑔 as given, the output should be as follows.
9.0
1.5
5.5
5.5
5.5
6.5
8.0
9.0
7.0

20

7.0
ii) Adjust your code so that grades that lie in the interval (5, 6) are rounded either up to 6 or down to

5 depending which of the two a number is closest to (in other words, rounding to 5.5 is no longer

allowed). Hint: You can use the and keyword to check multiple conditions in an if-statement.

On 𝑔 as given, the output should be as follows.
9.0
1.5
5
6
6
6.5
8.0
9.0
7.0
7.0
The latter procedure is in fact how your grades in the EOR bachelor program are rounded.

3.6 Math basics

In this chapter we will see some of the basic math functionality that Python has to offer. Many of these

tasks can be carried out by your graphing calculator as well, but Python can also handle much more difficult

problems that you will see in the course of you academic career.

We start with the basics of defining a function, such as a quadratic formula.

3.6.1 Python function

If we want to compute a certain mathematical expression for many different variables, it is often convenient

to use a Python function for this.

For example, consider the quadratic function 𝑓(𝑥) = 𝑥2 + 2𝑥2 − 1. Say we want to know the values of

𝑓(−3), 𝑓(−2.5), 𝑓(1) and 𝑓(4). What we would like to do is to ‘automate’ the computation of a function

value, so that we do not have to write out the whole function everytime.

For this we can use a Python function for this as follows.

def f(x):
return x**2 + 2*x - 1

What does the code above do? First of all the syntax to tell Python we want to define a function called f
that takes as input a number x is def f(x): .

We next have to tell Python what the function is supposed to compute. On the second line, with one tab

indented, we have the return statement. Here we write down the expression that the function should return

(or compute), which in our case is the function value 𝑓(𝑥) = 𝑥2 + 2𝑥2 − 1.

We can now compute the function value 𝑓(𝑥) for any value of 𝑥. What happens is that Python calls the

function 𝑓 with input the chosen value of 𝑥, and then returns the function value 𝑓(𝑥), i.e., the expression in
the return statement.

21

f(-2)

-1

f(1)

2

Note that you can also name the function differently, for example we could also have done

def quadratic_function(x): . You should then use the name quadratic_function too in

the command well you call the Python function to compute the function value 𝑓(𝑥).

def quadratic_function(x):
return x**2 + 2*x - 1

quadratic_function(1)

2

Just as your graphing calculator we can plot a Python function, search for its roots, integrate a certain area

under the curve and much more! More advanced tasks that Python can handle will introduced in later courses

in the EOR bachelor program.

If you want to get a better understanding of the codes in the coming sections, you could already have a

look at Chapter 9 of this course document of another course taught at the Tilburg School of Economics and

Management. We do not explain the code here, but give it as a teaser what more is possible with Python!

3.6.2 Plotting

Consider again the function 𝑓(𝑥) = 𝑥2 + 2𝑥 − 1. A visualization of this function is given below. If you

want to plot a function in Python you have to make use of functionality from NumPy and Matplotlib which

are so-called Python packages.

Packages are functions written by other people to make our live easy, i.e., so that we do not have to write

every code file from scratch in Python.

import numpy as np
import matplotlib.pyplot as plt

Define the x range
x = np.linspace(-3, 3, 600)

Define the function f
def f(x):

return x**2 + 2*x -1

Create the plot
plt.figure(figsize=(6, 4))
plt.plot(x, f(x), label='$f(x) = x^2 + 2x - 1$')

22

Add labels and title
plt.title('Plot of the function f on the interval [-3,3]')
plt.xlabel('x')
plt.ylabel('f(x)')

Add a grid
plt.grid(True)

Set range
plt.xlim(-3,3)
plt.ylim(-4,14)

Add a legend
plt.legend()

Show the plot
plt.show()

3 2 1 0 1 2 3
x

4

2

0

2

4

6

8

10

12

14

f(x
)

Plot of the function f on the interval [-3,3]
f(x) = x2 + 2x 1

3.6.3 Root finding

Similarly, the SciPy package can be used to carry out various mathematical tasks and algorithms, making it

very important for data analysis purposes.

The code below uses a pre-written Python function called fsolve() from SciPy to compute the roots of a

function 𝑓. In other words, fsolve() is a mathematical algorithm for finding the root of a function, such as

23

Newton’s method, that someone implemented in Python and made available publicly for the whole world

to use. If you are interested in the source code of this function, you can look it up in the documentation of

Python (more specifically, SciPy in this case).

import scipy.optimize as optimize

def f(x):
return x**2 + 2*x - 1

guess = 3
f_zero = optimize.fsolve(f,guess)

print("A root of the function f is given by", f_zero)

A root of the function f is given by [0.41421356]

The function fsolve() takes two inputs: a function of which we want to find a root, and an initial guess (3
in our case) of where the root is.

Entering an initial guess for where the root is located, is in some sense the equivalent of giving a bracket in

which the root should lie on your graphing calculator. In fact, there are other root finding functions available

in Python that work in this way, i.e., that require you to give an initial bracket, just as you do on your graphing

calculator.

Different initial guesses might lead to different roots found by Python. In fact, as you can see the function 𝑓
has two roots of which the above code finds the right one. We could find the left root by filling in a different

initial guess, e.g., −3 instead of 3.

guess = -3
f_zero = optimize.fsolve(f,guess)

print("A root of the function f is given by", f_zero)

A root of the function f is given by [-2.41421356]

3.6.4 Integration

Finally, it is also possible to use built-in functionality from SciPy to integrate a function. Below we integrate

the function 𝑓 from 0 to 2. This integral area is illustrated in the figure below.

import numpy as np
import matplotlib.pyplot as plt

Define the x range for the full plot
x = np.linspace(-3, 3, 600)

Define the function f
def f(x):

return x**2 + 2*x - 1

24

Create the plot
plt.figure(figsize=(6, 4))
plt.plot(x, f(x), label='$f(x) = x^2 + 2x - 1$')

Define the interval for shading (0 to 2)
x_fill = np.linspace(0, 2, 300)
plt.fill_between(x_fill, f(x_fill), alpha=0.3, color='orange',

label='Area under $f(x)$ from 0 to 2')

Add labels and title
plt.title('Plot of function f and shaded integral area from 0 to 2')
plt.xlabel('x')
plt.ylabel('f(x)')

Add a grid
plt.grid(True)

Set axis limits
plt.xlim(-3, 3)
plt.ylim(-4, 14)

Add a legend
plt.legend()

Show the plot
plt.show()

25

3 2 1 0 1 2 3
x

4

2

0

2

4

6

8

10

12

14

f(x
)

Plot of function f and shaded integral area from 0 to 2
f(x) = x2 + 2x 1
Area under f(x) from 0 to 2

from scipy.integrate import quad

Define the function to integrate
def f(x):

return x**2 + 2*x - 1

Perform the integration from 0 to 2
result, error = quad(f, 0, 2)

Print the result
print("Integral of f(x) from 0 to 2 is:", result)
print("Numerical error in integral computation is at most", error)

Integral of f(x) from 0 to 2 is: 4.666666666666666
Numerical error in integral computation is at most 5.666271351443603e-14

3.6.5 Why Python and not my calculator?

So far we have illustrated task with Python that you graphing calculator can also carry out. The advantage

of Python is that it can handle much more complicated computing tasks and handle much more difficult

mathematical functions, that your graphing calculator is not able to handle.

Many of these tasks you will come across in various courses of the EOR bachelor program, already starting

with the course Linear Optimization in the second quartile of year 1.

Furthermore, throught the EOR bachelor program you will also see some other programming languages such

as R and Matlab. Many of the general programming ideas, such as for-loops and conditional statements, exist

26

in those languages as well, but sometimes the syntax (i.e., the grammar of the programming language) is

different than that of Python.

27

Chapter 4

Linear algebra

In this chapter we will learn how to use Python for linear algebra.

4.1 Packages

In the first session of this crash course you have learned the basics of Python: how to use Python as a

calculator, use lists, for-loops, and if-else-statements.

Python can be used for much more advanced operations as well. As you can imagine, code quickly grows

more complicated. Fortunately, we can reuse code written by other through so-called packages (or libraries).

In the optional Section 3.6 you might have seen several packages already.

Using packages has several advantages. If you use a standard package, then it makes your code more readable.

It also reduces the risk of errors: Python packages are typically developed by expert programmers and

thoroughly tested before they are released to the public. For the mainstream packages that we will be using,

you can thus be reasonably confident that they deliver what they promise.

Another major advantage of packages is that they are often heavily optimized in terms of speed and memory

efficiency.1

Today we will use several well-known packages:

• NumPy,

• Sympy,

• and Matplotlib.

In a nutshell: packages are functions written by other people to make our life easy, i.e., so that we do not

have to write every code file from scratch in Python.

The NumPy, SymPy and Matplotlib packages should be installed in a standard Anaconda installation. If

you have another Python installation, typically using the PIP package manager should allow you to install

packages. In this case, commands like pip install numpy and pip install sympy should do the

job.

1Under the hood, numpy for instance relies on BLAS and LAPACK for most of its linear algebraic subroutines. BLAS and

LAPACK are written in a programming language called Fortran, see for example the LAPACK documentation. LAPACK is used by

many other programming languages, including Matlab.

28

4.2 Why numpy and sympy ?

The package numpy is designed for fast numerical calculations, e.g., with matrices. We can compute matrix

products, solve linear systems, and compute inverses with numpy very quicky. The package sympy , on the
other hand, is a symbolic mathematics library. It can do exact algebraic manipulations (also with variables

x and y), but it is less quick than numerical computations with numpy . sympy also contains a method to

do exact row-reduction, to bring a matrix into reduced echelon form. This may also be useful if you did

row-reduction by hand and want to verify your result with the computer.

4.3 Basic matrix and vector operations with Numpy

Suppose we have the following vectors x and y, and matrix 𝐴:

x = ⎡⎢
⎣

1
2
3

⎤⎥
⎦

, y = ⎡⎢
⎣

4
5
7

⎤⎥
⎦

, 𝐴 = ⎡⎢
⎣

1 2 3
4 5 6
7 8 9

⎤⎥
⎦

We can define vectors in Python as so-called NumPy arrays. Think of these as lists (that we saw earlier)

on which we can perform numerical computations. To create such arrays, we have to import the NumPy

package numpy . We do this under the alias np (so that we can use the short-hand notation np for numpy
everywhere).

import numpy as np

Define the vectors and matrix
x = np.array([1, 2, 3])
y = np.array([4, 5, 7])
A = np.array([[1, 2, 3],

[4, 5, 6],
[7, 8, 9]])

In Python, we can add vectors, compute the matrix-vector product and multiply matrices. Note: To compute

a matrix-vector product you use the command A@x . What happens if you use the command A*x ? Now, try
to compute 𝐴x, 𝐴y, and 𝐴(x + y) with Python. What do you notice?

your code here

4.4 Application: input-output models

(From Python Linear Algebra Notebook by Herbert Hamers)

A chemical plant receives oil from three different regions: the Middle East, South America, and the NorthSea.

The quality of the oil is different for each region. These oils will be used to produce gasoline, diesel fuel, and

bike chain oil. The oil from the Middle east will be only used for the production of gasoline. Of the oil of

South America, 20 % will be used for the production of gasoline, and 80 % for the production of diesel fuel.

Finally, 25 % of the North Sea oil will be used to produce gasoline, 25 % to produce diesel fuel, and 50 % for

the production of bike chain oil.

29

Suppose today a shipment arrives of 5000 barrels of oil from the Middle East, 9000 barrels of oil from South

America, and 1000 barrels from the North Sea. The plant wants to know how much gasoline, diesel fuel, and

bike chain oil it can produce from this shipment.

Obviously, the 5000 barrels of oil from the Middle East will completely be used for the production of gasoline,

i.e. 1 ⋅ 5000 = 5000 barrels of gasoline. Of the 9000 barrels of South America oil, 20 % will be used for

the production of gasoline. Hence, this leads to 0.2 ⋅ 9000 = 1800 barrels of gasoline. Finally, of the 1000
barrels of North sea oil 25 % will be used for the production of gasoline. Hence, we obtain 0.25 ⋅ 1000 = 250
barrels of gasoline. Hence, the total number of barrels of gasoline that will be produced is

1 ⋅ 5000 + 0.2 ⋅ 9000 + 0.25 ⋅ 1000 = 5000 + 1800 + 250 = 7050.
By a similar computation, one can compute the total number of barrels of diesel fuel:

0 ⋅ 5000 + 0.8 ⋅ 9000 + 0.25 ⋅ 1000 = 7450.
Finally, one can show that the total number of barrels of bike chain oil is 500, using a similar computation.

The production process can be summarized using the matrix-vector product. The production process is

represented by the following matrix

⎡⎢
⎣

1 0.2 0.25
0 0.8 0.25
0 0 0.5

⎤⎥
⎦

,

where the first column represents the division in the three end products of the Middle East oil, the second

column represents the division in the three end products of the South America oil, and the third column

represents the division in the three end products of the North Sea oil.

A=np.array([[1,0.2,0.25],[0,0.8,0.25],[0,0,0.5]])
print(A)

[[1. 0.2 0.25]
[0. 0.8 0.25]
[0. 0. 0.5]]

The shipment of the oil can be summarized by the following vector:

𝑞 = ⎡⎢
⎣

5000
9000
1000

⎤⎥
⎦

Using the matrix-vector product, it can easily be calculated how much gasoline, diesel fuel, and bike chain

oil can be produced from this oil-delivery:

𝐴𝑞 = ⎡⎢
⎣

1 0.2 0.25
0 0.8 0.25
0 0 0.5

⎤⎥
⎦

⎡⎢
⎣

5000
9000
1000

⎤⎥
⎦

= ⎡⎢
⎣

1 ⋅ 5000 + 0.2 ⋅ 9000 + 0.25 ⋅ 1000
0 ⋅ 5000 + 0.8 ⋅ 9000 + 0.25 ⋅ 1000

0 ⋅ 5000 + 0 ⋅ 9000 + 0.5 ⋅ 1000
⎤⎥
⎦

= ⎡⎢
⎣

7050
7450
500

⎤⎥
⎦

Hence, using the matrix-vector product we come to the same conclusion: the oil-delivery will result in 7050

barrels of gasoline, 7450 barrels of diesel fuel, and 500 barrels of bike chain oil.

The next day a shipment of 10000 barrels of oil from the Middle East, 1000 barrels of South America, and

200 barrels of the North Sea arrives. Determine the output of gasoline, diesel fuel, and key chain oil of this

oil-delivery.

30

your code here

Let us continue with a variation on the above problem.

Now, a chemical plant receives oil from five different regions: the Middle East, South America, the North

Sea,Africa and Asia. Again, the quality of the oil is different for each region. These oils will be used to

produce gasoline, diesel fuel, bike chain oil, fuel 95 and fuel 98. The oil from the Middle east will be only

used for the production of gasoline. Of the oil of South America, 20% will be used for the production of

gasoline, and 80% for the production of diesel fuel. 25% of the North Sea oil will be used to produce gasoline,

25% to produce diesel fuel, and 50% for the production of bike chain oil. Of the oil of Africa, 10% will be

used for the production of gasoline, 10% for the production of bike chain oil, 30% for the production of fuel

95 and 50% for the production of fuel 98. Finally, 30% of the Asia oil will be used to produce gasoline, 5 %

to produce diesel fuel, 50 % for the production of fuel 95, and 15% for the production of fuel 98.

Suppose today a shipment arrives of 5000 barrels of oil from the Middle East, 9000 barrels of oil from South

America, 1000 barrels from the North Sea, 4000 barrels of oil from Africa, and 4000 barrels of oil from Asia.

The plant wants to know how much gasoline, diesel fuel, bike chain oil, fuel 95, and fuel 98 it can produce
from this shipment.

With the new information 𝐴 will be a 5x5 matrix and 𝑞 will be a 5x1 vector. Determine the output of gasoline,
diesel fuel, bike chain oil, fuel 95, and fuel 98 of this oil-delivery.

your code here

4.5 Matrix operations: inverse, determinant, solving linear systems

Assuming we imported NumPy under the alias np , the module np.linalg from NumPy contains several

standard linear algebra methods that we will encounter today.

• det(A) : Determinant of matrix 𝐴
• inv(A) : Inverse of matrix 𝐴
• solve(A,b) : Solution to linear system 𝐴𝑥 = 𝑏

To use such a method, you should use the syntax np.linalg.method_name with method_name replaced

by one of the three options above.

import numpy as np

A = np.array([[0,1],[1,0]]) #Define A
print(A)

print("The determinant of A is", np.linalg.det(A))

[[0 1]
[1 0]]
The determinant of A is -1.0

Exercise 5.1:

i) Compute the determinant of the following matrices

31

𝐴 = (0 1
1 0) , 𝐵 = ⎛⎜

⎝

1 2 3
2 3 4
1 1 1

⎞⎟
⎠

, 𝐶 = ⎛⎜
⎝

1 3 2
2 3 7
1 3 1

⎞⎟
⎠

ii) Which of the matrices 𝐴, 𝐵, 𝐶 are invertible? For each of these matrices, compute the inverse.

your code here

Exercise 5.2:

In the LinearAlgebra course we have seen that if we multiply a single row by a constant 𝑘, then the determinant
gets multiplied by 𝑘 as well.

i) Verify this (using Python) for the matrix obtained from 𝐶 by multiplying the first row by 10:

𝐷 = ⎛⎜
⎝

10 0 0
0 1 0
0 0 1

⎞⎟
⎠

𝐶

ii) What is det(10𝐶)?

your code here

We can use Python to solve linear systems of equations using numpy . Consider for example the following
system of equations:

⎧{
⎨{⎩

𝑥1 − 3𝑥2 = 5
−𝑥1 + 𝑥2 + 5𝑥3 = 2

𝑥2 + 𝑥3 = 0

We can solve the system very efficiently numerically with the command np.linalg.solve(A,b) :

import numpy as np

Coefficient matrix A
A = np.array([[1, -3, 0],

[-1, 1, 5],
[0, 1, 1]])

Right-hand side vector b
b = np.array([5, 2, 0])

Solve the system
x = np.linalg.solve(A, b)
print("Solution:", x)

Solution: [2. -1. 1.]

32

As you can see, the solution is 𝑥1 = 2.0, 𝑥2 = −1.0, 𝑥3 = 1.0. Note that the output is numerical i.e., it is
an approximation computed with finite precision arithmetic inside the computer. numpy is faster for large

systems than sympy , but it may introduce tiny rounding errors (e.g., 2.00000000001 instead of 2).

Exercise 5.3: Use numpy to solve the following system:

⎧{
⎨{⎩

𝑥1 − 3𝑥2 + 4𝑥3 = −4
3𝑥1 − 7𝑥2 + 7𝑥3 = −8

−4𝑥1 + 6𝑥2 + 2𝑥3 = 4

your code here

4.6 Modifying matrix entries

Consider the following large matrix 𝐴, and a zero matrix 𝐵 of the same size as 𝐴:

A = np.array([
[5, 12, 7, 3, 14, 6, 9, 2, 11, 8],
[1, 13, 4, 10, 7, 5, 12, 6, 8, 3],
[9, 2, 11, 5, 13, 7, 4, 10, 6, 12],
[8, 1, 14, 6, 9, 3, 11, 2, 5, 13],
[7, 10, 3, 12, 6, 9, 2, 8, 4, 11],
[2, 6, 9, 5, 11, 7, 3, 12, 10, 1],
[4, 8, 2, 10, 5, 13, 6, 9, 1, 7],
[12, 3, 6, 11, 2, 8, 5, 14, 7, 10],
[10, 5, 1, 7, 12, 4, 8, 3, 6, 9],
[3, 9, 5, 8, 1, 10, 7, 11, 2, 12]

])
B=np.zeros((10,10))

We can modify entries of 𝐵 separately. E.g., we can modify the top-left entry of 𝐵 to be 100:

B[0,0]=100
print(B)

[[100. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]]

33

Exercise 5.4: Use for loops over the row indices 𝑖 and column indices 𝑗 to modify the entries of 𝐵 as follows,

for each entry of 𝐴:

• If 𝐴𝑖𝑗 < 6, set 𝐵𝑖𝑗 = 100.
• If 𝐴𝑖𝑗 ≥ 6, set 𝐵𝑖𝑗 = 𝐴𝑖𝑗.

Then, compute the sum of all entries in 𝐵 with np.sum(B) . What is the result?

your code here

4.7 Linear transformations of images

In this section we will illustrate the concept of applying linear transformations to real-life images. We use the

cv2 library, the numpy library, and the matplotlib packages for this.

The above packages should be installed in a standard Anaconda installation. If you have another Python

installation, typically using the PIP package manager should allow you to install packages. In this case,

commands like “pip install opencv-python” “pip install numpy” “pip install matplotlib” in a (Windows)

powershell should do the job.

import cv2
import numpy as np
import matplotlib.pyplot as plt

A linear transformation for a vector in ℝ2 can be represented by

[𝑥′

𝑦′] = [𝑎11 𝑎12
𝑎21 𝑎22

] [𝑥
𝑦]

For images, (𝑥, 𝑦) are the pixel coordinates of the original image and (𝑥′, 𝑦′) are the pixel coordinates of the
transformed image. First we load in an image (this can be any image with the name ‘image.jpg’, but it must

be in the same folder as the Python notebook):

img2 = cv2.imread('image.jpg')

plt.imshow(img2[:,:,::-1])
plt.axis('off')

34

The picture can be seen as a set of points in ℝ2, corresponding to the pixels, where each point is assigned a

color. We are now going to move the points according to a linear transformation ℝ2 → ℝ2 which maps x to

𝐴x.

We first predefine a Python function called perform_Transformation() to apply a transformation to the

image. You don’t have to understand this code, but only remember that its purpose is to apply transformations

to images. The function takes as input an image and a transformation matrix.

Function to apply transformation and visualize the result (source: kaggle.com)
def perform_Transformation(image, A):

rows,cols,ch = image.shape

M = np.array([[A[0,0], A[0,1], 0],
[A[1,0], A[1,1], 0]])

dst = cv2.warpAffine(image,M,(cols,rows))

plt.figure(figsize = (24,8))
plt.subplot(211); plt.imshow(image[:,:,::-1]); plt.title('Original Image')

plt.subplot(212); plt.imshow(dst[:,:,::-1]); plt.title("Transformed Image")

Next, we create a 2x2 (transformation) matrix 𝐴 and use the image that we stored in img2 variable and apply

the transformation function to these inputs. The function prints both the original and transformed image.

The matrix A scales the picture down 50% in both the x direction and y direction
A = np.array([[0.5,0],

[0,0.5]])

perform_Transformation(img2, A)

35

0 200 400 600 800 1000

0

100

200

300

400

500

600

700

Original Image

0 200 400 600 800 1000

0

100

200

300

400

500

600

700

Transformed Image

Exercise 5.5:

i. Can you scale the picture 50% down in the 𝑥-direction only?

ii. Investigate what the matrix 𝐴 = [0 1
1 0] does to the picture. Can you explain why?

your code here

The following matrix rotates the picture approximately 45 degrees (note that sin(𝜋/4) = cos(𝜋/4) ≈ 0.707).
Sadly, the image is only partly visible then.

36

The matrix A rotates the picture 45 degrees
A = np.array([[0.707,-0.707],

[0.707,0.707]])

perform_Transformation(img2, A)

0 200 400 600 800 1000

0

100

200

300

400

500

600

700

Original Image

0 200 400 600 800 1000

0

100

200

300

400

500

600

700

Transformed Image

Exercise 5.6:

i. Let 𝐴 = [0.5 0
0 1] and 𝐵 = [0 1

1 0]. Compute the matrix products 𝐴𝐵 and 𝐵𝐴.

37

ii. Investigate what the matrix 𝐵𝐴 = [0 1
1 0] [0.5 0

0 1] does to the picture. Can you explain why?

iii. What does the matrix 𝐴𝐵 = [0.5 0
0 1] [0 1

1 0] to the picture and why?

iv. Can you scale the picture 50% down in the 𝑥-direction only, and then rotate the picture (approximately)
45 degrees? What matrix corresponds to this?

your code here

4.8 Symbolic computations: sympy

The sympy library is for symbolic computations. We will now demonstrate how this library works. sympy
also contains a function to bring a matrix into reduced echelon form. This is very useful if you want to verify

manual calculations.

import sympy as sp

We now show how to solve the following system of equations:

⎧{
⎨{⎩

𝑥1 − 3𝑥2 + 4𝑥3 = −4
3𝑥1 − 7𝑥2 + 7𝑥3 = −8
−4𝑥1 + 6𝑥2 + 2𝑥3 = 4

The augmented matrix of the system of linear equations is

⎡⎢
⎣

1 −3 4 −4
3 −7 7 −8

−4 6 2 4
⎤⎥
⎦

In Python you can do this with sympy as follows.

Ab=sp.Matrix([[1,-3,4,-4],[3,-7,7,-8],[-4,6,2,4]])

Now we can find the reduced form of the system using rref() from the sympy library. The method returns

two elements. The first is the row-reduced echelon form of the matrix, and the second is a list of the pivot

columns. By typing Ab_rref[0] , only the row-reduced echelon form is printed.

Ab_rref = Ab.rref()
Ab_rref[0]

⎡⎢
⎣

1 0 0 2
0 1 0 2
0 0 1 0

⎤⎥
⎦

The system is consistent and we can immediately see the general solution: 𝑥1 = 2, 𝑥2 = 2 and 𝑥3 = 0.
The solution is exact, e.g., Python did not round the number 2 to 2.00000 as it does when using the numpy

38

module. sympy allows us to do exact computation with matrices, as opposed to approximate computations

with numpy . Computations with sympy are generally slower than with numpy , so for very large systems,
numpy is preferred.

Exercise 5.7: Use Python to solve the following system of equations:

⎧{
⎨{⎩

𝑥1 − 3𝑥2 = 5
−𝑥1 + 𝑥2 + 5𝑥3 = 2
𝑥2 + 𝑥3 = 0

your code here

4.9 Application: supply and demand model

(From Linear Algebra notebook by Herbert Hamers)

The demand 𝑞𝑑 and supply 𝑞𝑠 of an item depend on the price 𝑝 and income 𝑌. Suppose that the relation
between demand, price and income can be described by the equation

𝑞𝑑 = 8 − 0.2𝑝 + 0.1𝑌 ,

and the relation between supply and price by the equation

𝑞𝑠 = 6 + 0.3𝑝.

The market is in equilibrium if 𝑞𝑠 = 𝑞𝑑. Replacing both 𝑞𝑠 and 𝑞𝑑 by the new variable 𝑞, the market
equilibrium can be found by solving the following system of two linear equations for the unknowns 𝑝, 𝑞 and
𝑌:

{ 𝑞 = 8 − 0.2𝑝 + 0.1𝑌
𝑞 = 6 + 0.3𝑝.

First, we will rewrite this system of linear equations. We place all terms with a variable to the left of the equal

sign and moreover we put terms with the same variable in the different equations right below each other:

{ 𝑞 + 0.2𝑝 − 0.1𝑌 = 8
𝑞 − 0.3𝑝 = 6.

Ab = sp.Matrix([[1, 0.2, -0.1, 8], [1, -0.3, 0, 6]])
Ab

[1 0.2 −0.1 8
1 −0.3 0 6]

Exercise 5.8:

39

How many solutions does this system of linear equations have? You can use the function rref() again to

find the row reduced echelon form of the above matrix. Determine the solution if 𝑌 = 50.

your code here

4.10 Symbolic computation of the determinant in Python with sympy

The sympy package can also be used to calculate determinants of symbolic matrices.

Exercise 5.9:

We now investigate how to compute determinants of symbolic matrices using sympy. Let

𝐴 = ⎛⎜
⎝

1 0 𝑥
1 −𝑥 0
𝑥 0 −𝑥

⎞⎟
⎠

.

Our goal will be to compute the determinant of 𝐴 in terms of 𝑥. First we define the variable 𝑥 as a “symbolic”

variable in Sympy.

import sympy as sp
x = sp.symbols('x')

Next, carry out the following steps.

• Define the matrix A using the variable 𝑥.
• Compute the determinant of A using the command A.det() . For which values of 𝑥 does the determi-

nant equal zero?

• To be able to see more easily for which values of 𝑥 the determinant equals 0, you can use Sympy’s
sp.factor() function to factor the determinant. The input of this function is the determinant of 𝐴.

Apply this function and argue for which values of 𝑥 the matrix 𝐴 is invertible.

your code here

4.11 (Optional) Row reduction with intermediate steps

This optional section describes a more advanced code snippet that implements a row-reduction algorithm from

scratch, and allows you to output the intermediate operations. You should be able to read most of the code and

recognize the algorithm, but some details have not been explained in this notebook. More specifically, you

will see again for-loops and if-statements, but also “new” functions such as .copy(), .as_mutable(), .append().

If you are interested, we invite you to look up their documentation. You can also use this algorithm to revisit

some examples that you have seen in the linear algebra course.

As a disclaimer: this code has been generated using ChatGPT.

from sympy import Matrix

def rref_with_steps(mat):
"""

40

Perform row-reduction to RREF while recording intermediate steps and row operations.
Returns:

rref_matrix (Matrix),
pivot_columns (tuple),
steps (list of (Matrix, str)) # Each step is (matrix_snapshot, operation_description)

"""
A = mat.as_mutable().copy()
rows, cols = A.shape
pivots = []
steps = [(A.copy(), "Initial matrix")]

row = 0
for col in range(cols):

if row >= rows:
break

Find pivot row
pivot_row = None
for r in range(row, rows):

if A[r, col] != 0:
pivot_row = r
break

if pivot_row is None:
continue

Swap rows if needed
if pivot_row != row:

A.row_swap(pivot_row, row)
steps.append((A.copy(), f"Swap R{pivot_row+1} � R{row+1}"))

Scale pivot row
pivot_val = A[row, col]
if pivot_val != 1:

A.row_op(row, lambda x, _: x / pivot_val)
steps.append((A.copy(), f"R{row+1} → (1/{pivot_val})·R{row+1}"))

Eliminate other rows
for r in range(rows):

if r != row and A[r, col] != 0:
factor = A[r, col]
A.row_op(r, lambda x, j: x - factor * A[row, j])
steps.append((A.copy(), f"R{r+1} → R{r+1} - ({factor})·R{row+1}"))

pivots.append(col)
row += 1

41

return A, tuple(pivots), steps

A = Matrix([[1, 2, 1],
[2, 4, 3],
[3, 6, 5]])

rref_matrix, pivots, steps = rref_with_steps(A)

print("RREF:")
print(rref_matrix)
print("Pivot columns:", pivots)

print("\nSteps:")
for i, (s, op) in enumerate(steps):

print(f"Step {i}: {op}")
display(s)

RREF:
Matrix([[1, 2, 0], [0, 0, 1], [0, 0, 0]])
Pivot columns: (0, 2)

Steps:
Step 0: Initial matrix

⎡⎢
⎣

1 2 1
2 4 3
3 6 5

⎤⎥
⎦

Step 1: R2 → R2 - (2)·R1

⎡⎢
⎣

1 2 1
0 0 1
3 6 5

⎤⎥
⎦

Step 2: R3 → R3 - (3)·R1

⎡⎢
⎣

1 2 1
0 0 1
0 0 2

⎤⎥
⎦

Step 3: R1 → R1 - (1)·R2

⎡⎢
⎣

1 2 0
0 0 1
0 0 2

⎤⎥
⎦

Step 4: R3 → R3 - (2)·R2

⎡⎢
⎣

1 2 0
0 0 1
0 0 0

⎤⎥
⎦

42

Chapter 5

Linear optimization

In this chapter we will show how to implement linear optimization problems using Python. The goal is to

model optimization problems in Python and then solve them using Gurobi, which is a software package

dedicated to solving optimization problems.

INFO Prerequisites

This chapter assumes familiarity with Sections 3.1-3.5 of this online book.

In the next section we explain how to install Gurobi on your personal laptop, and how to connect it to

Anaconda. On the university computers Gurobi is already installed and configured correctly, so if you are

using such a computer, you can skip the next section.

5.1 Gurobi installation

It is assumed that you already have Python installed on your system. Otherwise, you need to install Python

first. The Anaconda distribution is a good choice. If you get stuck anywhere in the installation process, then

you can find more information on Gurobi’s Quick Start Guide.

5.1.1 Register at Gurobi

Visit the Gurobi website and click on the register button. Open the registration form and make sure that you

select the Academic account type, and select Student for the academic position.

5.1.2 Download Gurobi

Download Gurobi from the website. Note that you need to login with your Gurobi account before you

can download Gurobi. Select the distribution that corresponds to your system (e.g., Windows or macOS),

and select the regular “Gurobi Optimizer”, not any of the AMPL variations. Unless mentioned otherwise,

download the most recent version.

5.1.3 Install Gurobi

Run the installer and follow the installation steps. At some point, the installer may ask whether to add Gurobi

to your execution path. This is probably useful to accept.

43

5.1.4 Gurobi license

You cannot use Gurobi without a license, so you need to apply for a license. As a student you can request a

free academic license; take the Named-User Academic one. After you have obtained the license, you need

to activate it for your Gurobi installation. If you open the license details on the Gurobi website, you can

see what you need to do: open a command prompt and run the grbgetkey command with the code that

corresponds to your license. This command will create your license file. Make sure that you remember where

the license file is saved. The default location is probably the best choice.

Note that the grbgetkey command will check that you are on an academic domain, so you need to perform

this step on the university network (possibly via a VPN connection). Once installed correctly, you can also

run Gurobi without an active VPN connection.

5.1.5 Using Gurobi in Python

Gurobi should now be correctly installed, but we also want to be able to use it from Python. Therefore, we

need to install Gurobi’s Python package. Open your Anaconda prompt (if you have the Anaconda installation)

and run the following commands.

• conda config --add channels http://conda.anaconda.org/gurobi
• conda install gurobi

If you don’t have the Anaconda installation, then you can do something similar with the pip command.

5.1.6 Test your installation

Now you can test whether everything is setup correctly. Open an interactive Python session, for instance

using Jupyter Notebook. Try the following commands:

from gurobipy import Model
model = Model()

Set parameter Username
Set parameter LicenseID to value 2715549
Academic license - for non-commercial use only - expires 2026-09-29

If both these commands succeed, then you are done.

If the first command fails, then the Gurobi python module has not been installed correctly. If the second

command fails, then the license has not been setup correctly (make sure the license file is at the right location).

If at any point, you need more information about Gurobi, then you can always go to the official Gurobi

documention online.

5.2 Basics

All the relevant functionality needed to use Gurobi via Python is contained in the gurobipy package. For

our purposes, we only need two modules from this package:

• The Model module that we will use to build optimization problems

• The GRB module that contains various “constants” that we use to include words such as maximize and

minimize, as well as binary and integer.

44

http://www.gurobi.com/documentation/

In Python you can include the modules by adding the following line at the top of a script.

from gurobipy import Model, GRB

5.2.1 Example: Duplo problem

To illustrate how to implement optimization problems in Python, we consider the Duplo problem from the

lectures:
maximize 15𝑥1 + 20𝑥2 (profit)

subject to 𝑥1 + 2𝑥2 ≤ 6 (big bricks)

2𝑥1 + 2𝑥2 ≤ 8 (small bricks)

𝑥1, 𝑥2 ≥ 0
with decision variables

• 𝑥1: Number of chairs

• 𝑥2: Number of tables

Let us implement the Duplo problem in Gurobi.

Model object

To start, we will create a variable (or object) model that will contain all the information of the problem,

such as the decision variables, objective function and constraints.

In programming terms, we create an object from the Model() class. We can give the instance a name by

adding the name keyword argument, with value 'Duplo problem' in our case. We add this name with

quotations so that Python knows this is plain text.

Initialize Gurobi model.
model = Model(name='Duplo problem')

You can think of the Model class object model as a large box that we are going to fill with decision variables,

an objective function, and constraints. We will also reserve a small space in this box to store information

about the optimal solution to the linear optimization problem, once we have optimized the problem.

The concept of having “objects” is in fact what the programming language Python is centered around. This is

known as object-oriented programming, which you will learn about more later in your first full programming

course. You can have a look, for example, here already if you are interested in this concept.

Decision variables

To add decision variables, an objective function, and constraints, to our Model object we use so-calledmethods

which are Python functions.

To create a decision variable, we can use the addVar() method. As input argument, we include a name for

the decision variables.

Declare the two decision variables.
x1 = model.addVar(name='chairs')
x2 = model.addVar(name='tables')

45

If your Model object is not called model , but for example model_Duplo , then you should

use model_Duplo.addVar(name='chairs') instead. The same applies for all later methods

that are introduced. Never call a model Model (with capital M) because this spelling is reserved

for the Model() class in Gurobi.

When creating a variable, you can specify more properties. For example, we might have an upper and lower

bound for a decision variable (such as a nonnegativity constraint). You can use the keyword arguments lb
and ub , respectively, for this.

To see all these properties, you can check out the addVar documentation by typing help(Model.addVar)
in Python. Looking up the documentation in this way can be done for every method.

help(Model.addVar)

Help on cython_function_or_method in module gurobipy._model:

addVar(self, lb=0.0, ub=1e+100, obj=0.0, vtype='C', name='', column=None)
ROUTINE:

addVar(lb, ub, obj, vtype, name, column)

PURPOSE:
Add a variable to the model.

ARGUMENTS:
lb (float): Lower bound (default is zero)
ub (float): Upper bound (default is infinite)
obj (float): Objective coefficient (default is zero)
vtype (string): Variable type (default is GRB.CONTINUOUS)
name (string): Variable name (default is no name)
column (Column): Initial coefficients for column (default is None)

RETURN VALUE:
The created Var object.

EXAMPLE:
v = model.addVar(ub=2.0, name="NewVar")

If we would want to create a variable, with name test variable, having lower bound 3 and upper bound 7, we
can do this with x = model.addVar(lb=3,ub=7,name='test variable') using in particular the lb
and ub keyword arguments.

As you can see above, all the keyword arguments have default values, meaning that if we do not specify them,

Gurobi uses the specified default value for them. For example, by default a variable is continuous (vtype
keyword argument) and non-negative (lb keyword argument), so we do not have to specify these for the

Duplo exmpale, because there we have 𝑥1, 𝑥2 ≥ 0.

Also note that ub is set to 10100 which roughly speaking indicates that the decision variable has no upper

bound value by default.

46

Objective function

Now that we have our decision variables, we can use them to define the objective function and the constraints.

We use the setObjective() method to do so by refering to the variables created above. The sense
keyword argument must be used to specify whether we want to maximize or minimize the objective function.

For this, we use GRB.MAXIMIZE or GRB.MINIMIZE , respectively.

Specify the objective function.
model.setObjective(15*x1 + 20*x2, sense=GRB.MAXIMIZE)

Constraints

The next step is to declare the constraints using the addConstr() method. Also here, we can specify the

constraints refering to the variables x1 and x2 . We give the constraints a name as well.

Add the resource constraints on bricks.
model.addConstr(x1 + 2*x2 <= 6, name='big-bricks')
model.addConstr(2*x1 + 2*x2 <= 8, name='small-bricks')

<gurobi.Constr *Awaiting Model Update*>

Now the model is completely specified, we are ready to compute the optimal solution. We can do this using

the optimize() method applied to our model model .

Optimize the model
model.optimize()

Gurobi Optimizer version 12.0.3 build v12.0.3rc0 (win64 - Windows 10.0 (19045.2))

CPU model: 12th Gen Intel(R) Core(TM) i7-1265U, instruction set [SSE2|AVX|AVX2]
Thread count: 10 physical cores, 12 logical processors, using up to 12 threads

Optimize a model with 2 rows, 2 columns and 4 nonzeros
Model fingerprint: 0xadc88607
Coefficient statistics:

Matrix range [1e+00, 2e+00]
Objective range [2e+01, 2e+01]
Bounds range [0e+00, 0e+00]
RHS range [6e+00, 8e+00]

Presolve time: 0.02s
Presolved: 2 rows, 2 columns, 4 nonzeros

Iteration Objective Primal Inf. Dual Inf. Time
0 3.5000000e+31 3.500000e+30 3.500000e+01 0s
2 7.0000000e+01 0.000000e+00 0.000000e+00 0s

Solved in 2 iterations and 0.02 seconds (0.00 work units)
Optimal objective 7.000000000e+01

47

We can see some output from Gurobi, and the last line tells us that Gurobi found an optimal solution with

objective value 70.

To summarize all the step above, we have given the complete code below (but not executed this time).

from gurobipy import Model, GRB

Initialize Gurobi model.
model = Model(name='Duplo problem')

Declare the two decision variables.
x1 = model.addVar(name='chairs')
x2 = model.addVar(name='tables')

Specify the objective function.
model.setObjective(15*x1 + 20*x2, sense=GRB.MAXIMIZE)

Add the resource constraints on bricks.
model.addConstr(x1 + 2*x2 <= 6, name='big-bricks')
model.addConstr(2*x1 + 2*x2 <= 8, name='small-bricks')

Optimize the model
model.optimize()

Recalling our linear optimization problem object as being a “box” filled with decision variables, an objective

function and constraints, the box now also contains a small space where the optimal solution is stored.

Let us have a look at how to access information about the optimal solution. The objective function

value of the optimal solution, that was also displayed in the output when optimization the model with

model.optimize() is stored in the ObjVal attribute. An attribute is a piece of information about an

object in Python.

Print text 'Objective value' and the model.ObjVal attribute value
print('Objective value:', model.ObjVal)

Objective value: 70.0

The optimal values of a decision variables can be obtained by accessing the X attribute of a variable.

print('x1 = ', x1.X)
print('x2 = ', x2.X)

x1 = 2.0
x2 = 2.0

If the model has many variables, printing variables in this way is a cumbersome approach. It is then easier to

iterate over all variables of the model using the getVars() method. This method creates a list of all the

decision variables of the model.

48

print(model.getVars())

[<gurobi.Var chairs (value 2.0)>, <gurobi.Var tables (value 2.0)>]

As you can see above, we already see the optimal values of the decision variables, but also a lot of unnecessary

information.

Let us print these values in a nicer format by iterating over the list model.getVars() using a for-loop with

index variable var ; you can choose another name than var for the index variable if you want. We print for

every variable var its name, stored in the attribute VarName , and its value, stored in the attribute X . In
between, we print the = symbol in plain text (hence, the quotations).

Recall that if you want to print multiple data types (such as a variables and text) in a print() statement,

you should separate them with commas.

for var in model.getVars():
print(var.VarName, "=", var.X)

chairs = 2.0
tables = 2.0

LIGHTBULB Exercise 1

Médecins sans Frontières (MSF) (Dutch: Artsen zonder Grenzen) wants to build medical kits to use in

region with an epidemic. The following constraints should be taken into account.

• MSF has raised € 6400 to build two types of medical medical kits: vaccination and surgical kits.

Assembling a surgical kit costs € 320; a vaccination kit € 210.

• MSF has in total 80 labour hours available in which employees can build these kits. Building a
surgical kit requires 2.5 labour hours; a vaccination kit requires 4.5 labour hours.

• At most 15 vaccination kits can be built.
A linear optimization problem that maximizes the total number of produced kits is given below. The

decision variables are the number of surgical kits (𝑥1) and the number of vaccination kits (𝑥2) to
assemble.

max 𝑧 = 𝑥1 + 𝑥2 total number of kits

s.t. 320𝑥1 + 210𝑥2 ≤ 6400 budget constraint

2.5𝑥1 + 4.5𝑥2 ≤ 80 labor hours constraint

𝑥2 ≤ 15 at most 15 vac. kits

𝑥1, 𝑥2 ≥ 0 nonneg. constraints

Implement this model in Python with a Model object called model_msf , with decision variable whose
keyword arguments for name are 'Surgical kits' and 'Vaccination kits' , respectively.
Optimize your model.

If you include the following lines at the end of your code, you should get the output as indicated.

49

Replace model_msf by chosen name of Model object if different.
For example, if your object is called model, then use model.getVars() instead
for var in model_msf.getVars():

print(var.VarName, "=", var.X)

Surgical kits = 13.114754098360653
Vaccination kits = 10.491803278688531

As you can see in the output of Exercise 1, the optimal values of the decision variables are not integer, although

this is a desired property because we cannot build, e.g., 13.11 kits. We will later see how you can enforce the

decision variables to be integer-valued as well. You can ignore this shortcoming for now.

LIGHTBULB Exercise 2

A brewery produces beer in Haarlem and Eindhoven (plants), and ships to Amsterdam, Amersfoort,

Gouda, Den Bosch and Breda (customers).

We can ship beer units from the plants to the customers, taking into account transportation costs, demand

of the customers and supply of the plants. In the table below we have indicated the following input data:

• Unit transport costs (in euros) from the plants (Haarlem, Eindhoven) to the customers (Amster-

dam, Breda, Gouda, Amersfoort, Den Bosch);

• Demand of each customer: what needs to at least be delivered;

• Maximum supply capacity of each plant: what can at most be supplied.

A’dam Breda Gouda A’foort Den Bosch Supply

Haarlem 131 405 188 396 485 47

Eindhoven 554 351 479 366 155 63

Demand 28 16 22 31 12

50

We define decision variables 𝑥𝑝𝑐 that model the number of units shipped from plant 𝑝 to customer 𝑐,
with the meaning of the indices 𝑝 and 𝑐 as follows:

• Plants: 𝑝 = 1 for Haarlem, 𝑝 = 2 for Eindhoven.
• Customers: 𝑐 = 1 for Amsterdam, 𝑐 = 2 for Breda, 𝑐 = 3 for Gouda, 𝑐 = 4 for Amersfoort,

𝑐 = 5 for Den Bosch.
A linear optimization problem that minimizes the total transportation costs subject to the demand and

supply constraints is given below.

min 131𝑥11 + 405𝑥12 + 188𝑥13 + 396𝑥14 + 485𝑥15+
554𝑥21 + 351𝑥22 + 479𝑥23 + 366𝑥24 + 155𝑥25

s.t. 𝑥11 + 𝑥12 + 𝑥13 + 𝑥14 + 𝑥15 ≤ 47 supply Haarlem

𝑥21 + 𝑥22 + 𝑥23 + 𝑥24 + 𝑥25 ≤ 63 supply Eindhoven

𝑥11 + 𝑥21 ≥ 28 demand A’dam

𝑥12 + 𝑥22 ≥ 16 demand Breda

𝑥13 + 𝑥23 ≥ 22 demand Gouda

𝑥14 + 𝑥24 ≥ 31 demand A’foort

𝑥15 + 𝑥25 ≥ 12 demand Den Bosch

𝑥11, 𝑥12, 𝑥13, 𝑥14, 𝑥15, 𝑥21, 𝑥22, 𝑥23, 𝑥24, 𝑥25 ≥ 0 ship nonneg. amounts

Implement this model in Python with a Model object called model_beer . In the name keyword

argument of a decision variable, indicate the plant-customer combination it represents (for example,

you could define x11 = model_beer.addVar(name='Haarlem-Amsterdam') for the decision

variable 𝑥11 modeling the Haarlem-Amsterdam combination).

If you include the following lines at the end of your code, you should get the output as indicated.

for var in model_beer.getVars():
print(var.VarName, "=", var.X)

Haarlem-Amsterdam = 28.0
Haarlem-Breda = 0.0
Haarlem-Gouda = 19.0
Haarlem-Amersfoort = 0.0
Haarlem-Den Bosch = 0.0
Eindhoven-Amsterdam = 0.0
Eindhoven-Breda = 16.0
Eindhoven-Gouda = 3.0
Eindhoven-Amersfoort = 31.0
Eindhoven-Den Bosch = 12.0

As you might have experienced in Exercise 2, once the number of decision variables and/or constraints grows,

it becomes more tedious to write out the full problem in Python. Luckily, there are more efficient ways to

implement the above problem, that only require a couple of lines of code, even if there are many more plants

and customers! This is beyond the scope of this course.

5.2.2 Infeasible models

Not every linear optimization problem has an optimal solution. For example, the problem

51

min 𝑧 = 2𝑥1 + 𝑥2
s.t. 𝑥1 + 𝑥2 ≤ −1

𝑥1, 𝑥2 ≥ 0

has no feasible solution, because the sum of two nonnegative numbers (𝑥1, 𝑥2 ≥ 0) can never sum up to

something smaller or equal than −1 (𝑥1 + 𝑥2 ≤ −1). The implementation of this problem is given below. It

can be seen from the output (on the last line) that the model is indeed infeasible.

Initialize Gurobi model.
model = Model(name='Infeasible model')

Declare the two decision variables.
x1 = model.addVar() # We leave out the name keyword argument
x2 = model.addVar()

Specify the objective function.
model.setObjective(x1 + x2, sense=GRB.MINIMIZE)

Add the resource constraints on bricks.
model.addConstr(x1 + x2 <= -1)

Optimize the model
model.optimize()

Gurobi Optimizer version 12.0.3 build v12.0.3rc0 (win64 - Windows 10.0 (19045.2))

CPU model: 12th Gen Intel(R) Core(TM) i7-1265U, instruction set [SSE2|AVX|AVX2]
Thread count: 10 physical cores, 12 logical processors, using up to 12 threads

Optimize a model with 1 rows, 2 columns and 2 nonzeros
Model fingerprint: 0xf5807d19
Coefficient statistics:

Matrix range [1e+00, 1e+00]
Objective range [1e+00, 1e+00]
Bounds range [0e+00, 0e+00]
RHS range [1e+00, 1e+00]

Presolve removed 0 rows and 2 columns
Presolve time: 0.00s

Solved in 0 iterations and 0.00 seconds (0.00 work units)
Infeasible model

You can look up the type of solution to a problem in the Status attribute of a model.

model.Status

3

52

The above output number is not informative right away. The number represents the Optimization Status Code,

whose meaning you can look up in Gurobi’s online documentation.

LIGHTBULB Exercise 3

When implementing and optimizing the following problem

max 𝑧 = 2𝑥1 + 𝑥2
s.t. 𝑥1 − 𝑥2 ≤ 5

𝑥1, 𝑥2 ≥ 0
,

Python returns an Optmization Status Code of 4. Look up in the online documentation, more specifically
the Reference Manual, what this means.

5.3 Integer variables

If you are not interested in finding fractional solutions, but want to enforce the decision variables to take

integer values, you can do this with the vtype keyword argument.

Consider the following linear optimization problem (without integrality constraints).

max 𝑧 = 2𝑥1 + 𝑥2
s.t. 𝑥1 + 𝑥2 ≤ 2.5

𝑥1, 𝑥2 ≥ 0
,

Initialize Gurobi model.
model_frac = Model(name='Fractional problem')

Suppress Gurobi Optimizer output
model_frac.setParam('OutputFlag',0)

Declare the two decision variables.
x1 = model_frac.addVar(name="x1")
x2 = model_frac.addVar(name="x2")

Specify the objective function.
model_frac.setObjective(2*x1 + x2, sense=GRB.MAXIMIZE)

Add the resource constraints on bricks.
model_frac.addConstr(x1 + x2 <= 2.5)

Optimize the model
model_frac.optimize()

Print optimal values of decision variables
for var in model_frac.getVars():

print(var.VarName, "=", var.X)

53

x1 = 2.5
x2 = 0.0

If we specify vtype=GRB.INTEGER in the addVar() method when creating the variables, Gurobi will

find an optimal solution with all decision variables being integers.

Initialize Gurobi model.
model_int = Model(name='Integer problem')

Suppress Gurobi Optimizer output
model_int.setParam('OutputFlag',0)

Declare the two decision variables.
x1 = model_int.addVar(name="x1",vtype=GRB.INTEGER)
x2 = model_int.addVar(name="x2",vtype=GRB.INTEGER)

Specify the objective function.
model_int.setObjective(2*x1 + x2, sense=GRB.MAXIMIZE)

Add the resource constraints on bricks.
model_int.addConstr(x1 + x2 <= 2.5)

Optimize the model
model_int.optimize()

Print optimal values of decision variables
for var in model_int.getVars():

print(var.VarName, "=", var.X)

x1 = 2.0
x2 = -0.0

Anoter common case is where the decision variables are supposed to be binary, meaning they can only take

values in {0, 1}. Setting variables to be binary can be done with vtype=GRB.BINARY .

Initialize Gurobi model.
model_bin = Model(name='Binary problem')

Suppress Gurobi Optimizer output
model_bin.setParam('OutputFlag',0)

Declare the two decision variables.
x1 = model_bin.addVar(name="x1",vtype=GRB.BINARY)
x2 = model_bin.addVar(name="x2",vtype=GRB.BINARY)

Specify the objective function.
model_bin.setObjective(2*x1 + x2, sense=GRB.MAXIMIZE)

54

Add the resource constraints on bricks.
model_bin.addConstr(x1 + x2 <= 2.5)

Optimize the model
model_bin.optimize()

Print optimal values of decision variables
for var in model_bin.getVars():

print(var.VarName, "=", var.X)

x1 = 1.0
x2 = 1.0

LIGHTBULB Exercise 4

Take your solution from Exercise 1, and modify it so that the decision variables only take integer values.

Optimize the model again.

Your output should now be as follows:

Print optimal values of decision variables
for var in model_msf.getVars():

print(var.VarName, "=", var.X)

Surgical kits = 9.0
Vaccination kits = 15.0

5.4 Beyond the basics

You can also do more complicated things with gurobipy such as defining many decision variables with

one command, or use a for-loop to create many constraints in one go.

To illustrate these concepts, we will write a compact code to solve a general standard form problem with 𝑚
constraints and 𝑛 decision variables: min c′x subject to Ax = b, x ≥ 0 where c ∈ ℝ𝑛, b ∈ ℝ𝑚, A ∈ ℝ𝑚×𝑛,

and 𝑥 = (𝑥1, … , 𝑥𝑛).

More explicitly, the problem is as follows:

min 𝑐1𝑥1 + ⋯ + 𝑐𝑛𝑥𝑛
s.t. 𝑎1𝑥1 + ⋯ + 𝑎1𝑛𝑥𝑛 = 𝑏1

⋮
𝑎𝑚1𝑥1 + ⋯ + 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚

𝑥1, ⋯ 𝑥𝑛 ≥ 0

Suppose we are given the following input data in Numpy arrays (see the Linear Algebra chapter).

import numpy as np

55

Objective function coefficients
c = np.array([3, 1, 7, 2, -1]) # n = 5

Matrix A (m = 3, n = 5)
A = np.array([

[2, 1, 0, 3, -1],
[1, 0, 4, 0, 2],
[0, 3, -2, 1, 1]

])

Right-hand side vector b
b = np.array([10, 12, 5]) # m = 3

Decision variables

To create the decision variables 𝑥1, … , 𝑥5, we can use addVar() five times, but this is rather cumbersome,

especially if we would have many more decision variables.

Instead we can use the related method addVars() that allows us to create many variables simultaneously.

We define m and n here for convenience later
m = 3 # Alternatively, m = len(b)
n = 5 # Alternatively, n = len(c)

Create Model object
model = Model("Standard form problem")

Add decision variables
x = model.addVars(n)

With the syntax x = model.addVars(n) we tell Python to create 𝑛(= 5) decision variables. You can use
the 𝑖-th decision variable to define constraints and the objective function by indexing x at position 𝑖 − 1, i.e,
by using x[i-1] . Recall that Python starts counting from zero when indexing data objects such as lists.

If you want you can also add a list of names for the decision variables using the name keyword argument.

Make sure that the number of elements in the list matches the value of 𝑛.

Add decision variables
x = model.addVars(n,name=["Var1","Var2","Var3","Var4","Var5"])

Objective function

We continue with creating the objective function by indexing the variables in x and the array c containing

the objective function coefficients.

Create objective function
model.setObjective(x[0]*c[0] + x[1]*c[1] + x[2]*c[2] + x[3]*c[3] + x[4]*c[4])

56

We can do this even more compactly by using the quicksum() function, which has to be imported from

gurobipy . In the code below we do two things (recall that 𝑛 = 5):

1. Create the list y = [x[0]*c[0], x[1]*c[1], x[2]*c[2], x[3]*c[3], x[4]*c[4]] using

the concept of list comprehension.

2. Use the quicksum() function to add up the elements in the list y and set the resulting quantity as

our objective function.

from gurobipy import quicksum

Create objective function
y = [x[j]*c[j] for j in range(n)] # List with terms of the objective function
model.setObjective(quicksum(y)) # Sum up the terms in the list y

The part [x[j]*c[j] for j in range(n)] is the compact list comprehension syntax for carrying out

the piece of code below where we repeatedly append the terms x[j]*c[j] as elements to an (initially

empty) list y using the append() method for a list.

y = [] # Start with empty list y
for j in range(n): # Iterated over j = 0,1,2,...,n-1

y.append(x[j]*c[j]) # Append the element x[j]*c[j] to the list y

Note that these computations are actually still quite abstract up until this point, because the decision variables

have no actual values yet! You should think of these more as symbolic computations.

Constraints

We continue with adding the equality constraints. We use a for-loop to loop over the equalities 𝑎𝑖1𝑥1 + ⋯ +
𝑎𝑖𝑛𝑥𝑛 = 𝑏𝑖 for 𝑖 = 1, … , 𝑚 (note that Python starts counting at 0, though). Note that the array A is a list of

lists, and that A[i] corresponds to the coefficients 𝑎𝑖1, … , 𝑎𝑖𝑛.

print(A[2]) # Last row i = 2 of the matrix A

[0 3 -2 1 1]

Furthermore, A[i][j] is then the 𝑗-th element on the 𝑖-th row.

print(A[2][3]) # Last row i = 2 and element j = 3 of the matrix A

1

For a fixed 𝑖, the list [A[i][j]*x[j] for j in range(n)] then contains the coefficients of the 𝑖-
th row multiplied by the variables in 𝑥, i.e, [𝑎𝑖1𝑥1, ..., 𝑎𝑖𝑛𝑥𝑛]. Applying quicksum() to this list then

computes the expression 𝑎𝑖1𝑥1 + ⋯ + 𝑎𝑖𝑛𝑥𝑛. This should equal 𝑏𝑖, so we model the constraint by

quicksum([A[i][j]*x[j] for j in range(n)]) == b[i] . This is done below.

57

Create constraints
for i in range(m):

y = [A[i][j]*x[j] for j in range(n)]
model.addConstr(quicksum(y) == b[i])

All together, our code looks as below. The beauty of this is that even if the input data arrays 𝐴, 𝑏 and 𝑐 get
larger, the code below does not.

import numpy as np
from gurobipy import Model, GRB, quicksum

Objective function coefficients
c = np.array([3, 1, 7, 2, -1]) # n = 5

Matrix A (m = 3, n = 5)
A = np.array([

[2, 1, 0, 3, -1],
[1, 0, 4, 0, 2],
[0, 3, -2, 1, 1]

])

Right-hand side vector b
b = np.array([10, 12, 5]) # m = 3

We define m and n here for convenience later
m = 3
n = 5

Create Model object
model = Model("Standard form problem")

Suppres Gurobi output message
model.setParam('OutputFlag',0)

Add decision variables
x = model.addVars(n,name=["Var1","Var2","Var3","Var4","Var5"])

Create objective function
model.setObjective(quicksum(x[j]*c[j] for j in range(n)))

Create constraints
for i in range(m):

model.addConstr(quicksum(A[i][j]*x[j] for j in range(n)) == b[i])

Optimize the model
model.optimize()

58

Print optimal values of decision variables
for var in model.getVars():

print(var.VarName, "=", var.X)

Var1 = 4.75
Var2 = 0.0
Var3 = 0.0
Var4 = 1.3749999999999998
Var5 = 3.625

The critical reader, however, might note that, if we want to include the variable names with the list

["Var1","Var2","Var3","Var4","Var5"] , then this list would need to get longer when 𝑛 increases.

You can replace this list by the list comprehension [f"Var{i+1}" for i in range(n)] to quickly

generate the list ["Var1","Var2", ..., "Varn"] . This comprehension loops over the values 𝑖 =
0, 1 … , 𝑛 − 1.

The part f"Var{i+1}" is called a formatted string (of text). It allows us to include the value of the expression

i+1 in plain text (we do +1 because we want the variable names to start at 1). The value you want to include
in plain text should be put in curly brackets {} , and you have to add an f in front of the string of text in

quotations so that Python knows it should format the value of 𝑖 + 1 into text.

Now we get a code which truly is independent of the values of 𝑚 and 𝑛. That is, for any input data 𝐴, 𝑏 and
𝑐, the code below creates a model to solve the standard form problem.

import numpy as np
from gurobipy import Model, GRB, quicksum

Objective function coefficients
c = np.array([3, 1, 7, 2, -1]) # n = 5

Matrix A (m = 3, n = 5)
A = np.array([

[2, 1, 0, 3, -1],
[1, 0, 4, 0, 2],
[0, 3, -2, 1, 1]

])

Right-hand side vector b
b = np.array([10, 12, 5]) # m = 3

We define m and n here for convenience later
m = 3
n = 5

Create Model object
model = Model("Standard form problem")

59

Suppres Gurobi output message
model.setParam('OutputFlag',0)

Add decision variables
x = model.addVars(n,name=[f"Var{i+1}" for i in range(n)])

Create objective function
model.setObjective(quicksum(x[j]*c[j] for j in range(n)))

Create constraints
for i in range(m):

model.addConstr(quicksum(A[i][j]*x[j] for j in range(n)) == b[i])

Optimize the model
model.optimize()

Print optimal values of decision variables
for var in model.getVars():

print(var.VarName, "=", var.X)

Var1 = 4.75
Var2 = 0.0
Var3 = 0.0
Var4 = 1.3749999999999998
Var5 = 3.625

60

	Welcome
	What is a programming language?
	Why Python?

	Software
	Installing Anaconda
	Jupyter Notebook
	Creating new notebook
	Opening existing notebook

	Code snippets in this book

	Python basics
	Arithmetic operations
	Variables
	Lists
	For-loop
	Conditional statements
	Math basics
	Python function
	Plotting
	Root finding
	Integration
	Why Python and not my calculator?

	Linear algebra
	Packages
	Why numpy and sympy?
	Basic matrix and vector operations with Numpy
	Application: input-output models
	Matrix operations: inverse, determinant, solving linear systems
	Modifying matrix entries
	Linear transformations of images
	Symbolic computations: sympy
	Application: supply and demand model
	Symbolic computation of the determinant in Python with sympy
	(Optional) Row reduction with intermediate steps

	Linear optimization
	Gurobi installation
	Register at Gurobi
	Download Gurobi
	Install Gurobi
	Gurobi license
	Using Gurobi in Python
	Test your installation

	Basics
	Example: Duplo problem
	Infeasible models

	Integer variables
	Beyond the basics

